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Abstract 
In this paper, we present an analysis using unsupervised machine learning (ML) to identify the key geologic 
factors that contribute to the geothermal production in the Brady geothermal field. Brady is a 
hydrothermal system in northwestern Nevada that supports both electricity production and direct use of 
hydrothermal fluids. Transmissive fluid flow pathways are relatively rare in the subsurface but are critical 
components of hydrothermal systems like Brady and many other types of fluid flow systems in fractured 
rock. The ML method, non-negative matrix factorization with k-means clustering (NMFk), is applied to a 
library of fourteen 3D geologic characteristics hypothesized to control hydrothermal circulation in the 
Brady geothermal field. Our results indicate the macro-scale faults and a local step-over in the fault system 
preferentially occur along with production wells when compared to injection wells and non-productive 
wells. We infer that these are the key geologic characteristics that control the through-going 
hydrothermal transmission pathways at Brady. Our results demonstrate 1) the specific geologic controls 
on the Brady hydrothermal system and 2) the efficacy of pairing ML techniques with 3D geologic 
characterization to enhance the understanding of subsurface processes. 

1. Introduction 
Crustal permeability is a key parameter in geothermal process models used in exploration and 
development of geothermal systems. Permeability is, however, highly variable in space (Caine et al., 1996; 
Caine and Forster, 1999; Fairley et al., 2003; Fairley and Hinds, 2004; Sanderson and Zhang, 2004) and this 
complicates characterization of subsurface hydrothermal processes. Accordingly, it is common in 
developed geothermal systems to produce fluid flow from a few relatively small (sub-meter- to meter-
long) intervals of a borehole that may be 100s or 1000s of meters in total length (based on Nevada Division 
of Minerals, publicly available data). This compartmentalization of hydrothermal fluid flow means that the 
volume of rock that transmits fluids at rates suitable for power production or direct use is much smaller 
than the volume of rock that does not transmit fluid (or transmits at sub-commercial rates). This presents 
a significant challenge to efficient exploration, development, and management of these renewable energy 
resources.  

Compartmentalization of the fluid flow system may be associated with a variety of geologic 
characteristics. For instance, spatial changes in fracture permeability throughout a fault network, and/or 
permeability variation in the stratigraphic succession may control compartmentalization. The purpose and 
innovation of this study is to reveal the geologic factors that influence this compartmentalization of fluid 



flow in hydrothermal systems. We evaluate three-dimensional (3D) geologic characteristics through an 
unsupervised machine learning (ML) method called non-negative matrix factorization with k-means 
clustering (NMFk). Specifically, NMFk is applied to a suite of geologic factors that have been calculated 
along production, injection, and non-productive wells at Brady geothermal field in northwestern Nevada. 
The ML results indicate that the mapped macro-scale faults and the ~km-scale step-over in the fault 
system are closely associated with production wells relative to injection wells and non-productive wells. 
Tracking the 3D distribution of these factors in geothermal prospects, developed geothermal fields, and 
other types of fluid flow systems may help promote more efficient resource development and 
management. 

2. Background 
2.1 The Brady geothermal system 
Brady geothermal field, in northwestern Nevada, USA (Figure 1), has seen geothermal electricity 
production since 1992 and research or exploration since at least 1959 (Benoit and Butler, 1983). The 
hydrothermal system supplies hot fluid to two power stations and a direct-use vegetable drying facility. 
Electricity production capacity at Brady is 26.1 MWe, and ~7 MWth is delivered to the drying facility 
(Ayling, 2020). Temperatures of produced fluid have been ~130-185°C during this time (based on Nevada 
Division of Minerals, publicly available data), though temperatures as high as 219°C have been measured 
(Shevenell et al., 2012). These relatively high temperatures occur at relatively shallow levels (300-600 
depth for some production wells) as a result of convective upwelling driven by temperature-related 
differences in fluid density, and/or hydraulic head driven circulation through hot rock. In either case, 
relatively high heat flow in the Basin and Range physiographic province, which is associated with Miocene 
to recent crustal thinning (Lachenbruch and Sass, 1977; Blackwell, 1983), provides the heat. The fluids 
circulate through transmissive pathways that have been primarily attributed to a network of fractures 
within a step-over in the Basin and Range-type (e.g., Wernicke, 1992; Colgan et al., 2006) normal fault 
system, the Brady fault zone (Faulds et al., 2003, 2010a, b; 2017; Siler et al., 2018; Figure 1).  



 

Figure 1. Map of Brady geothermal area. The fault strands that constitute the Brady fault are 
shown in green. Contours represent modeled temperature at 750 m depth. Wells are colored by 
their usage (production, injection, and non-productive) for depths shallower than 750 m. The 
general geometry of the step-over is shown to the left of the fault system. Interstate 80 (orange 
line) is shown for reference. 
 

The stratigraphic section at Brady consists of metamorphic basement rocks overlain by Oligocene to late 
Miocene volcanic rocks, and late Miocene to Holocene sedimentary rocks. The Brady fault zone is a west-
dipping, north-northeast-striking system of normal faults that cuts this stratigraphic section (Figure 1). 



The step-over (Faulds et al., 2010a, b; 2017; Siler et al., 2013, 2016) is an area where parallel but non-
collinear strands of the Brady fault zone come together (e.g., Peacock and Sanderson, 1991, 1994; Fossen 
and Rotevatn, 2016). The southern segment of the Brady fault zone steps to the left to meet the northern 
segment (Figure 1; Faulds et al., 2017). Siler et al. (2018) suggested the occurrence of the hydrothermal 
system within the step-over is related to focused stress and strain that periodically occur at the step-over 
during fault slip, resulting in progressive generation and maintenance of a dense fracture network over 
geologic time. Advection of heat to shallow levels by hydrothermal circulation within this fracture network 
is evident from a ~3 km-wide × 6 km-long (across strike × along strike) temperature anomaly centered on 
the step-over (Figure 1). Geothermal production wells at Brady are situated within the step-over. Fluids 
are produced from two levels; ~300-600 m and ~1750 m depth (based on Nevada Division of Minerals, 
publicly available data).  

3.  Methods 
An existing 3D geologic map of Brady, synthesizing a variety of geologic and geophysical data (Siler and 
Faulds, 2013a; Jolie et al., 2015; Siler et al., 2016, 2021; Witter et al., 2016) was used to develop a suite of 
geologic variables that may control the distribution/localization of transmissive pathways and production-
grade hydrothermal fluid flow. The fourteen different variables described below are calculated from the 
3D geologic map and projected to forty-seven production, injection, and non-productive wells within the 
field (Figure 1). 

3.1 Geothermal Well Data 
The Brady well dataset is much denser at shallow levels than at deep levels (just eight of forty-seven wells 
extend to ~1750 m, the deeper of the two geothermal reservoirs). The data at deeper levels are too sparse 
to be used in the NMFk analysis. As a result, this analysis focuses on the shallow (~300-600-m-deep) 
reservoir, where the data are sufficiently dense for NMFk. 750 m is used as the cutoff depth to ensure 
that the full length of all wells that produce from the shallow reservoir is included in the dataset. There 
are nine production wells and six injection wells that have been used for production or injection at depths 
of less than 750 meters since the geothermal power station was brought online in 1992. Wells producing 
from the shallow reservoir account for ~57% of the total produced volume (June 1992-August 2019; based 
on publicly available data Nevada Division of Minerals). We consider the remaining 32 wells to be non-
productive wells. Four of these remaining thirty-two wells are used for production or injection; however, 
these wells produce or inject in the deeper reservoir. At depths less than 750 m, these four wells are cased 
and cemented. We assume that these wells would not transmit fluids to or from the formation at <750 m 
regardless of well completion. These four wells are therefore considered ‘non-productive’ for our 
purposes. Each of the below 14 geologic factors is calculated at 1m-intervals along all 47 wells. The 
resultant database of 336,784 entries (24,056 locations with 14 variables) is used as input data for NMFk 
analysis. Figure 2 shows the values for each of the 14 variables for one of the production wells. 

3.2 Geothermal variables 
Fault factors (faults, curve, td, ts, faultnear): 
For each of the thirty-two faults defined by the 3D geologic map (Siler and Faulds, 2013a; Siler et al., 2016, 
2021; Witter et al., 2016), a 30-meter-wide fault zone is generated. This zone approximates the effective 
width of secondary faulting and fracturing around each fault. This width is consistent with empirically 
derived fault zone widths for km-long faults, like the Brady fault zone (Scholz et al., 1993; Anders and 



Wiltschko, 1994). The fault variable has a value of ‘1’ where a well is located within a fault zone and ‘0’ 
for well intervals not located within a fault zone. The curve variable is the along-strike and down-dip 
curvature calculated along each fault. The td and ts variables are the dilation tendency and slip tendency, 
respectively for each fault. These values are calculated using methods of Morris et al. (1996) and Ferrill et 
al. (1999) and a local stress model calculated at Brady (Jolie et al., 2015). The 30-meter-wide fault zone 
for each fault is populated with the estimated curve, ts, and td values. Segments of faults with a high value 
for curve are postulated to be associated with accentuated faulting and fracturing as a result of stress 
loading at the highly curved fault segments (e.g., Sibson, 1994), and may therefore preferentially host 
fluid flow. Dilation tendency (td) and slip tendency (ts) are the ratios of the resolved normal stresses and 
the normal to shear stress ratio on faults, respectively. Fault segments that are either highly dilatant (high 
td) or stress loaded for slip (high ts) are likely to host fluid flow (Siler et al., 2021). For all wells, the 
faultnear variable is calculated as the difference between the distance to the nearest 3D mapped fault 
plane and the maximum distance to a fault in the dataset. This is done so that high faultnear values occur 
at intervals of wells that are near to faults (e.g., see Figure 2), in the same way that high values for the 
other variables occur where hydrothermal processes are expected. 

Fault network factors (faultdense, faultintdense): 
Areas in the subsurface with especially dense faulting and fracturing are expected to have relatively high 
permeability, and thus host hydrothermal circulation. The spatial density of fault planes (faultdense) and 
the spatial density of the lines of intersection between faults and the lines of termination of faults 
(faultintdense) are calculated in 3D space (Siler et al., 2021). Fault intersections and terminations 
represent structural discontinuities, where stresses become concentrated and accentuated fracturing is 
expected (Peacock and Sanderson, 1991; Fossen and Rotevatn, 2016). Similarly, areas with many closely 
spaced faults are also expected to have a relatively high density of fractures, i.e. high permeability. 

Stress and strain factors (dilation, normal, coulomb): 
The step-over in the Brady fault is an important factor controlling the presence of hydrothermal 
circulation at Brady (Faulds et al., 2003, 2010a, b; 2017; Siler et al., 2013; 2016; 2018; 2021). Stress and 
strain become concentrated at the step-over when slip occurs on the Brady fault, and the location of the 
stress and strain perturbation is largely concomitant with the production well field and the local 
temperature anomaly (Siler et al., 2018). The 2D modeled dilation (dilation), normal stress reduction (i.e., 
‘unclamping’ of a fault) (normal) and coulomb shear stress increase (coulomb) as a result of 1-meter 
normal slip on the Brady fault are calculated at 250-meter-depth intervals from the surface to 750 m depth 
(Siler et al., 2018). dilation, normal and coulomb values between the calculated intervals are linearly 
interpolated, approximating the volumetric dilation, normal stress reduction, and coulomb shear stress 
increase in the study area. Siler et al. (2018) suggest that the stress and strain perturbations that occur 
with fault slip results in a zone of accentuated secondary faulting and fracturing that is an important factor 
in localizing hydrothermal circulation in the step-over. 

Stratigraphic factors (contactnear, unitthick, goodlith): 
In addition to the above structural variables, permeability associated with stratigraphic factors may also 
play an important role in localizing hydrothermal circulation. Stratigraphic contacts can be manifested as 
zones of breccia. These brecciated contact zones in successions of volcanic rocks, like occurring at Brady, 
may have matrix porosity and permeability that are important aspects of the flow system. The distance 
from the nearest stratigraphic contact (contactnear) is calculated as the difference between the distance 



to the nearest stratigraphic contact along each well and the maximum distance to a contact in the dataset. 
In this case, high values of contactnear would be expected to correlate with hydrothermal fluid flow. 
Alternatively, relatively thick geologic units, i.e. relatively large, intact volumes of rock distal to 
stratigraphic contacts may focus strain on a relatively small number of dominant, high-aperture fractures. 
Areas with high values for the thickness of each stratigraphic unit (unitthick) from the 3D geologic map 
could be favorable for localizing hydrothermal circulation in this case. The ~300-600-m-depth production 
reservoir at Brady occurs in Miocene mafic to intermediate volcanic rocks. It is possible that these specific 
stratigraphic units have high matrix porosity and permeability and/or are particularly favorable for 
developing highly transmissive fracture systems when faulted. The goodlith variable is ‘1’ for well intervals 
with these stratigraphic units and ‘0’ for intervals in other units. 

Temperature (modeltemp): 
Advection is a much more efficient means of heat transport than conduction. Higher temperatures, 
therefore, are expected within or near transmissive fluid flow conduits. Equilibrated temperature logs 
from thirty-nine deep (as deep as ~2 km) geothermal wells and seventy-nine shallow (~150 m) 
temperature gradient wells (Shevenell et al., 2012) were utilized to build a 3D temperature model (Siler 
et al., 2021). The modeled temperature (modeltemp) is projected to each of the forty-seven wells. 

3.3 NMFk methods 
NMFk combines two unsupervised machine learning (ML) methods, non-negative matrix factorization 
(NMF) and customized k-means clustering. NMF factorizes a non-negative data matrix, X, into two 
components 𝑊 and 𝐻, where 𝑊 is a location matrix and 𝐻 is an attribute matrix.  

Given a non-negative data matrix 𝑋 =	 [𝐱!, ∙	∙	∙	, 𝐱"] 	 ∈ 	ℝ#×", each column of X is a variable/sample 
vector, where 𝑚 and 𝑛 are the number of locations and attributes, respectively. NMF factorizes or 
decomposes X based on user-specified number of dimensions 𝑘 into 𝑊 and 𝐻 matrices by minimizing the 
following loss function (Lee and Seung, 1999):  

 ℒ =∥ 𝑋 −𝑊𝐻⊺ ∥&'  (1) 
where ∥∙∥&  denotes Frobenius norms. 𝐻 can be considered as a basis matrix of X that is optimized for the 
linear approximation of X. Because only a few basis vectors represent all data vectors, good approximation 
vectors are those that capture the latent structure of X.  

After completion of NMF process, 1,000 estimated H are clustered into k clusters using customized k-
means clustering. Because k is also unknown in k-means clustering, the algorithm consecutively examines 
specified k by obtaining 1,000 H for each feature/variable. During clustering, the similarity between two 
variables is assessed according to the cosine norm. After clustering, the Silhouette value (Silhouettes, 
1987) are calculated and used to estimate a particular choice of k. The Silhouette value quantifies how 
similar an object is to its own cluster compared to other clusters and varies from -1 to +1; high values 
indicate that the object is well matched to its own cluster and poorly matched to neighboring clusters. 
The combination of the least ℒ and the highest Silhouette value is used to determine the number of 
optimal clusters, or hidden signals. If k is low, the Silhouette value will be high, but so may be ℒ because 
of under-fitting. For high k, the Silhouette value will be low and the solution may be over-fit.  So, the best 
estimate for k is a number that optimizes both the ℒ and Silhouette values.  



 

Figure 2. The 14 variables used in this study along one of the Brady production wells. Cool colors 
correspond to low values and warm colors correspond to high values for each variable. For the 
binary variables (fault and goodlith), red corresponds to a value of one (a fault or the producing 
lithology), purple corresponds to a value of zero. For faultnear and contactnear warm colors 
indicate nearness to faults or contacts  

 

 



There are other matrix factorization tools such as singular value decomposition (SVD) (Klema & Laub, 
1980) and principal and independent component analyses (PCA and ICA) (Wold & Geladi, 1987; Comon, 
1994). There are few advantages of NMFk over the preceding matrix factorization tools, for instance, it 
handles both real and categorical variables, sparse datasets (with missing data entries), and provides 
interpretable results (Alexandrov et al. 2014; Vesselinov et al. 2018). Furthermore, NMFk has been used 
to discover hidden geothermal signatures at several geothermal sites in the U.S. (Ahmmed et al. 
2020a,b,c,d; Vesselinov et al. 2020a,b).  

4. Results 
As outlined above, NMFk analysis reveals associations within a complex dataset. In our case, these 
associations characterize interdependencies among geologic attributes and production, injection, and 
non-productive well locations within the analyzed 3D domain. In this analysis, the results with values of 
2, 4, 5, and 6 for k are considered. The 2-cluster result was underfit. The 3-cluster result is rejected by 
NMFk algorithm because of its low Silhouette value. The 4, 5, and 6 cluster results are all robust solutions 
based on their ℒ and Silhouette values. Numbers of clusters larger than 6 were overfit. Each of the 4, 5, 
and 6 cluster results is a permissible solution and the H matrices for 4, 5, and 6 signals show very similar 
weighting patterns between variables (Figure 3). We chose to interpret the 4-cluster herein, since the 
smaller number of clusters is more easily interpretable in the framework of the geologic controls of 
hydrothermal fluid flow at Brady. Figure 3A shows the 4-cluster H (attribute) -matrix. Below, we use 
‘signal’ to refer to the H-matrix rows and W-matrix columns (S1, S2, S3, and S4).  

In addition to defining the four signals, a ‘cluster’ is defined for each well. Figure 4 shows the W (location) 
-matrix, the four signals (S1, S2, S3, S4) relative to each of the 47 geothermal wells, and the cluster (A, B, 
C, or D) that each well belongs to. Figure 4A and Figure 4B are the same matrix, Figure 4A is sorted by the 
cluster label, Figure 4B is sorted by S2 value. For both Figures 3 and 4, warm colors indicate a relatively 
high (strong) weight between the signal and the variable (Figure 3) or the signal and the well (Figure 4) 
and cool colors indicate a relatively low weight. Figure 5 shows the Brady well field and the cluster that 
each well falls into. Figure 6 shows a biplot of S1 vs S2. These two signals most effectively separate the 
production wells from the injection and non-productive wells. On Figure 6, the wells and variables are 
plotted by their S1 and S2 values from Figure 3A and Figure 4, respectively. The production wells (red) 
have relatively high S2 values and relatively low S1 values. The variables (plotted as asterisks) that plot in 
the same quadrant, i.e. also have relatively high S2 values and relatively low S1 values, are those that most 
effectively separate the production wells from the other wells.  

5. Discussion 
These results show that six of the nine wells that have been used for geothermal production at Brady from 
the shallow (~300-600 m depth) reservoir (June 1992-August 2019) fall in cluster C (Figures 4A and 5). 
Cluster C is associated with relatively high S2 values, and relatively low values for S1, S3, and S4 (Figure 
3A). Additionally, all nine of the production wells fall within the seventeen highest S2 values (Figure 4B). 
This further indicates that relatively high S2 values are strongly associated with production wells relative 
to the other wells. NMFk results indicate that the fault factors, fault network factors, and stress and strain 
factors that are more dominant in S2 (and therefore predominate along the production wells) relative to 
injection wells and non-productive wells. 



 

Figure 3. H (attribute) matrix for 4-signals, 5-signals and 6-signals. The 4-signal solution, which is 
interpreted here, is highlighted. Warm colors indicate that the variable has a high weight with 
that particular signal, cool colors indicate that the variable has a low weight with that specific 
signal. 



 

Figure 4 W (location) matrix. The four signals from the NMFk results relative to the forty-seven 
geothermal wells A) sorted by well clusters, B) sorted by S2 values. Warm colors indicate that the 
variable has a high weight with that particular signal, cool colors indicate that the variable has a 
low weight with that particular signal. The well usage (production, injection or non-productive) 
and the well cluster labels (A, B, C, or D) are listed. 



 

Figure 5. Map of the Brady well field and fault system. Wells are shown by their use (production, 
injection, or non-productive) and their cluster (A, B, C, or D). Cluster C (triangles), which contains 
six of the nine production wells is highlighted with a white halo. 
 



 

Figure 6. Biplot of signal-1 (S1) vs signal-2 (S2). Production wells (red) and the faults, dilation, and 
faultdense variables have high S2 values and relatively low S1 values indicating that these 
variables control the separation of the production wells from the rest of the data set. 
 

Fault factors 
The occurrence of faults intersecting a well, i.e. the faults variable, is the predominant faulting related 
factor associated with S2 (Figure 3A). This is evident on Figure 6 in which faults plots in the upper left 
quadrant, with relatively high S2 and relatively low S1; a similar pattern is observed to with the majority 
of the production wells. Though faultnear also has a high S2 values, it has relatively high values in S1, S3, 
and S4 (Figure 3A), so it less distinctly related to S2 relative to faults. On Figure 6 this is evident from 
faultnear plotting in the upper-right quadrant, farther to the right relative to the production wells. These 
results suggest that the presence or absence of distinct, macro-scale fault zones is strongly related to 
production wells, more so than to the other fault factors such as nearness to faults (faultnear), the 
curvature of faults (curve), slip tendency (td), or dilation tendency (ts). 

Fault network factors 
The spatial density of fault planes (faultdense) is the predominant fault network factor related to S2 and 
the production wells (Figure 3A). This is evident on Figure 6 in which faultdense plots in the upper left 
quadrant, with relatively high S2 and relatively low S1, similar to the majority of the production wells. 
Though faultindense has a high S2 value, it also has relatively high S1 and S3 values (Figure 3A), and plots 
to the right of the production wells relative to faultdense. This indicates that fault density is more strongly 
related to production wells than fault intersection density. 

Stress and strain factors 
Dilation occurring as a result of modeled fault slip (dilation) is the predominant stress/strain factor related 
to S2 and the production wells. This is evident on Figure 6 in which dilation plots in the upper left quadrant, 
with relatively high S2 and relatively low S1, similar to the majority of the production wells. These results 
indicate that dilation is strongly related to production wells relative to normal or coulomb, the other 
stress/strain network factors examined herein. 



Stratigraphic factors 
The thickness of geologic units (unitthick) has high S2 values relative to S1 values (Figure 3A). Relative to 
the nearness to geologic contacts (contactnear), and the specific geologic units that are associated with 
geothermal production (goodlith), unitthick is more strongly related to S2 and the production wells (Figure 
2A, 6). However, S1 values for unitthick are high relative to the production wells (unitthick plots in the 
upper right on Figure 6), so unitthick appears to be less strongly related to the production wells relative 
to dilation, faultdense, and faults. 

Temperature  
Temperature (modeltemp) has relatively low values for all signals. This suggests that the modeled 
temperature is not significantly higher or lower along any subset of wells relative to the others. 

Geologic controls on hydrothermal processes at Brady 
The NMFk results suggest that there are two dominant characteristics of the geologic structure that 
control hydrothermal processes at <750 m depth at Brady: the distinct, macro-scale faults and the step-
over in the Brady fault system. The macro-scale faults are those that are mappable in 3D at the local scale 
using geologic and geophysical evidence (Siler et al. 2021). Interestingly, this relatively simple fault 
variable, the binary occurrence or non-occurrence of a 30-m-wide fault zone (Figure 2), is more closely 
related to the production wells than the static stress state of the faults (td or ts), the geometry of the 
faults (curve), or the nearness to the mapped fault planes (faultnear). 

The step-over in the Brady fault zone (Figure 1) is the other dominant geologic factor controlling 
hydrothermal processes at Brady. The geometry and location of the step-over controls the spatial density 
of fault planes (faultdense), since faults are most dense in the step-over (Figure 1). The step-over also 
controls the dilatational strain that occurs as a result of modeled fault slip on the Brady fault zone 
(dilation) (Siler et al., 2018). The NMFk results suggest that the spatial density of fault planes and the 
modeled dilation are the most effective indicators of step-over’s control on hydrothermal processes, 
relative to the other stress and strain variables (normal and coulomb) and the spatial density of fault 
intersections (faultintdense). Thicker geologic units (unitthick) may also influence hydrothermal 
processes. This may indicate that faults cutting through thicker geologic units preferentially transmit the 
high flow rates necessary for geothermal production relative to faults cutting thinner units. However, 
based on the ML analyses, this control appears to be secondary to the macro-scale faults and the step-
over. The modeltemp variable is not strongly related to production wells relative to the other wells. It is 
likely that our extrapolation of the existing temperature data does not sufficiently resolve advective 
relative to conductive heat transport, and thus modeled temperature is of relatively ineffective for 
resolving discrete fluid flow pathways. 

6. Conclusions 
Non-negative matrix factorization with k-means clustering (NMFk) analyses was conducted on a 3D 
geological dataset from Brady geothermal field in order to elucidate the geologic characteristics that 
control hydrothermal circulation in the shallow (~300-600 m depth) geothermal reservoir. These analyses 
show that known, macro-scale faults, i.e. those that have been mapped in 3D based on geological and 
geophysical evidence, are strongly associated with the production wells at Brady. Geologic factors that 
occur most prominently within the Brady step-over, such as high spatial densities of faults, and dilatation 
brought on by modeled fault slip, are also associated predominantly with production wells relative to 



other wells. These results suggest that the shallow hydrothermal reservoir at Brady is hosted by relatively 
prominent faults. Locations where such faults lie within the subsurface projection of the step-over; i.e. 
the volume of rock with relatively high fault and fracture density and where fractures tend dilate as a 
result of periodic fault slip, are especially well suited for geothermal production. These two factors, in 
concert and not either independently, control the presence of the Brady hydrothermal system that has 
been developed for electricity production and direct uses. The NMFk methodology successfully 
differentiates production wells from amongst a larger number of non-productive wells using these 
geologic data. This suggests that these geologic parameters may be effective as training data for using 
NMFk or other machine learning techniques to identify areas within an unexplored volume of the 
subsurface that have the geologic characteristics that constitute productive geothermal wells. 
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